Metamath Proof Explorer


Theorem lmodlcan

Description: Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvacl.v V = Base W
lmodvacl.a + ˙ = + W
Assertion lmodlcan W LMod X V Y V Z V Z + ˙ X = Z + ˙ Y X = Y

Proof

Step Hyp Ref Expression
1 lmodvacl.v V = Base W
2 lmodvacl.a + ˙ = + W
3 lmodgrp W LMod W Grp
4 1 2 grplcan W Grp X V Y V Z V Z + ˙ X = Z + ˙ Y X = Y
5 3 4 sylan W LMod X V Y V Z V Z + ˙ X = Z + ˙ Y X = Y