Step |
Hyp |
Ref |
Expression |
1 |
|
lmodprop2d.b1 |
|
2 |
|
lmodprop2d.b2 |
|
3 |
|
lmodprop2d.f |
|
4 |
|
lmodprop2d.g |
|
5 |
|
lmodprop2d.p1 |
|
6 |
|
lmodprop2d.p2 |
|
7 |
|
lmodprop2d.1 |
|
8 |
|
lmodprop2d.2 |
|
9 |
|
lmodprop2d.3 |
|
10 |
|
lmodprop2d.4 |
|
11 |
|
lmodgrp |
|
12 |
11
|
a1i |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
13 14 15 3 16 17 18 19
|
islmod |
|
21 |
20
|
simp2bi |
|
22 |
21
|
a1i |
|
23 |
|
simplr |
|
24 |
|
simprl |
|
25 |
5
|
ad2antrr |
|
26 |
24 25
|
eleqtrd |
|
27 |
|
simprr |
|
28 |
1
|
ad2antrr |
|
29 |
27 28
|
eleqtrd |
|
30 |
13 3 15 16
|
lmodvscl |
|
31 |
23 26 29 30
|
syl3anc |
|
32 |
31 28
|
eleqtrrd |
|
33 |
32
|
ralrimivva |
|
34 |
33
|
ex |
|
35 |
12 22 34
|
3jcad |
|
36 |
|
lmodgrp |
|
37 |
1 2 7
|
grppropd |
|
38 |
36 37
|
syl5ibr |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
39 40 41 4 42 43 44 45
|
islmod |
|
47 |
46
|
simp2bi |
|
48 |
5 6 8 9
|
ringpropd |
|
49 |
47 48
|
syl5ibr |
|
50 |
|
simplr |
|
51 |
|
simprl |
|
52 |
6
|
ad2antrr |
|
53 |
51 52
|
eleqtrd |
|
54 |
|
simprr |
|
55 |
2
|
ad2antrr |
|
56 |
54 55
|
eleqtrd |
|
57 |
39 4 41 42
|
lmodvscl |
|
58 |
50 53 56 57
|
syl3anc |
|
59 |
10
|
adantlr |
|
60 |
58 59 55
|
3eltr4d |
|
61 |
60
|
ralrimivva |
|
62 |
61
|
ex |
|
63 |
38 49 62
|
3jcad |
|
64 |
37
|
adantr |
|
65 |
48
|
adantr |
|
66 |
|
simpll |
|
67 |
|
simprlr |
|
68 |
|
simprrr |
|
69 |
10
|
oveqrspc2v |
|
70 |
66 67 68 69
|
syl12anc |
|
71 |
70
|
eleq1d |
|
72 |
|
simplr1 |
|
73 |
1
|
ad2antrr |
|
74 |
68 73
|
eleqtrd |
|
75 |
|
simprrl |
|
76 |
75 73
|
eleqtrd |
|
77 |
13 14
|
grpcl |
|
78 |
72 74 76 77
|
syl3anc |
|
79 |
78 73
|
eleqtrrd |
|
80 |
10
|
oveqrspc2v |
|
81 |
66 67 79 80
|
syl12anc |
|
82 |
7
|
oveqrspc2v |
|
83 |
66 68 75 82
|
syl12anc |
|
84 |
83
|
oveq2d |
|
85 |
81 84
|
eqtrd |
|
86 |
|
simplr3 |
|
87 |
|
ovrspc2v |
|
88 |
67 68 86 87
|
syl21anc |
|
89 |
|
ovrspc2v |
|
90 |
67 75 86 89
|
syl21anc |
|
91 |
7
|
oveqrspc2v |
|
92 |
66 88 90 91
|
syl12anc |
|
93 |
10
|
oveqrspc2v |
|
94 |
66 67 75 93
|
syl12anc |
|
95 |
70 94
|
oveq12d |
|
96 |
92 95
|
eqtrd |
|
97 |
85 96
|
eqeq12d |
|
98 |
|
simplr2 |
|
99 |
|
simprll |
|
100 |
5
|
ad2antrr |
|
101 |
99 100
|
eleqtrd |
|
102 |
67 100
|
eleqtrd |
|
103 |
16 17
|
ringacl |
|
104 |
98 101 102 103
|
syl3anc |
|
105 |
104 100
|
eleqtrrd |
|
106 |
10
|
oveqrspc2v |
|
107 |
66 105 68 106
|
syl12anc |
|
108 |
8
|
oveqrspc2v |
|
109 |
108
|
ad2ant2r |
|
110 |
109
|
oveq1d |
|
111 |
107 110
|
eqtrd |
|
112 |
|
ovrspc2v |
|
113 |
99 68 86 112
|
syl21anc |
|
114 |
7
|
oveqrspc2v |
|
115 |
66 113 88 114
|
syl12anc |
|
116 |
10
|
oveqrspc2v |
|
117 |
66 99 68 116
|
syl12anc |
|
118 |
117 70
|
oveq12d |
|
119 |
115 118
|
eqtrd |
|
120 |
111 119
|
eqeq12d |
|
121 |
71 97 120
|
3anbi123d |
|
122 |
16 18
|
ringcl |
|
123 |
98 101 102 122
|
syl3anc |
|
124 |
123 100
|
eleqtrrd |
|
125 |
10
|
oveqrspc2v |
|
126 |
66 124 68 125
|
syl12anc |
|
127 |
9
|
oveqrspc2v |
|
128 |
127
|
ad2ant2r |
|
129 |
128
|
oveq1d |
|
130 |
126 129
|
eqtrd |
|
131 |
10
|
oveqrspc2v |
|
132 |
66 99 88 131
|
syl12anc |
|
133 |
70
|
oveq2d |
|
134 |
132 133
|
eqtrd |
|
135 |
130 134
|
eqeq12d |
|
136 |
16 19
|
ringidcl |
|
137 |
98 136
|
syl |
|
138 |
137 100
|
eleqtrrd |
|
139 |
10
|
oveqrspc2v |
|
140 |
66 138 68 139
|
syl12anc |
|
141 |
5 6 9
|
rngidpropd |
|
142 |
141
|
ad2antrr |
|
143 |
142
|
oveq1d |
|
144 |
140 143
|
eqtrd |
|
145 |
144
|
eqeq1d |
|
146 |
135 145
|
anbi12d |
|
147 |
121 146
|
anbi12d |
|
148 |
147
|
anassrs |
|
149 |
148
|
2ralbidva |
|
150 |
149
|
2ralbidva |
|
151 |
5
|
adantr |
|
152 |
1
|
adantr |
|
153 |
152
|
eleq2d |
|
154 |
153
|
3anbi1d |
|
155 |
154
|
anbi1d |
|
156 |
152 155
|
raleqbidv |
|
157 |
152 156
|
raleqbidv |
|
158 |
151 157
|
raleqbidv |
|
159 |
151 158
|
raleqbidv |
|
160 |
6
|
adantr |
|
161 |
2
|
adantr |
|
162 |
161
|
eleq2d |
|
163 |
162
|
3anbi1d |
|
164 |
163
|
anbi1d |
|
165 |
161 164
|
raleqbidv |
|
166 |
161 165
|
raleqbidv |
|
167 |
160 166
|
raleqbidv |
|
168 |
160 167
|
raleqbidv |
|
169 |
150 159 168
|
3bitr3d |
|
170 |
64 65 169
|
3anbi123d |
|
171 |
170 20 46
|
3bitr4g |
|
172 |
171
|
ex |
|
173 |
35 63 172
|
pm5.21ndd |
|