Metamath Proof Explorer
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypothesis |
lmodring.1 |
|
|
Assertion |
lmodring |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodring.1 |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
2 3 4 1 5 6 7 8
|
islmod |
|
| 10 |
9
|
simp2bi |
|