Metamath Proof Explorer


Theorem lmodsca

Description: The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w W = Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
Assertion lmodsca F X F = Scalar W

Proof

Step Hyp Ref Expression
1 lmodstr.w W = Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
2 1 lmodstr W Struct 1 6
3 scaid Scalar = Slot Scalar ndx
4 snsstp3 Scalar ndx F Base ndx B + ndx + ˙ Scalar ndx F
5 ssun1 Base ndx B + ndx + ˙ Scalar ndx F Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
6 5 1 sseqtrri Base ndx B + ndx + ˙ Scalar ndx F W
7 4 6 sstri Scalar ndx F W
8 2 3 7 strfv F X F = Scalar W