Metamath Proof Explorer


Theorem lmodstr

Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w W = Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
Assertion lmodstr W Struct 1 6

Proof

Step Hyp Ref Expression
1 lmodstr.w W = Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
2 1nn 1
3 basendx Base ndx = 1
4 1lt2 1 < 2
5 2nn 2
6 plusgndx + ndx = 2
7 2lt5 2 < 5
8 5nn 5
9 scandx Scalar ndx = 5
10 2 3 4 5 6 7 8 9 strle3 Base ndx B + ndx + ˙ Scalar ndx F Struct 1 5
11 6nn 6
12 vscandx ndx = 6
13 11 12 strle1 ndx · ˙ Struct 6 6
14 5lt6 5 < 6
15 10 13 14 strleun Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙ Struct 1 6
16 1 15 eqbrtri W Struct 1 6