Step |
Hyp |
Ref |
Expression |
1 |
|
lmodsubdi.v |
|
2 |
|
lmodsubdi.t |
|
3 |
|
lmodsubdi.f |
|
4 |
|
lmodsubdi.k |
|
5 |
|
lmodsubdi.m |
|
6 |
|
lmodsubdi.w |
|
7 |
|
lmodsubdi.a |
|
8 |
|
lmodsubdi.x |
|
9 |
|
lmodsubdi.y |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 10 5 3 2 11 12
|
lmodvsubval2 |
|
14 |
6 8 9 13
|
syl3anc |
|
15 |
14
|
oveq2d |
|
16 |
|
eqid |
|
17 |
3
|
lmodring |
|
18 |
6 17
|
syl |
|
19 |
4 16 12 11 18 7
|
rngnegr |
|
20 |
4 16 12 11 18 7
|
ringnegl |
|
21 |
19 20
|
eqtr4d |
|
22 |
21
|
oveq1d |
|
23 |
|
ringgrp |
|
24 |
18 23
|
syl |
|
25 |
4 12
|
ringidcl |
|
26 |
18 25
|
syl |
|
27 |
4 11
|
grpinvcl |
|
28 |
24 26 27
|
syl2anc |
|
29 |
1 3 2 4 16
|
lmodvsass |
|
30 |
6 7 28 9 29
|
syl13anc |
|
31 |
1 3 2 4 16
|
lmodvsass |
|
32 |
6 28 7 9 31
|
syl13anc |
|
33 |
22 30 32
|
3eqtr3d |
|
34 |
33
|
oveq2d |
|
35 |
1 3 2 4
|
lmodvscl |
|
36 |
6 28 9 35
|
syl3anc |
|
37 |
1 10 3 2 4
|
lmodvsdi |
|
38 |
6 7 8 36 37
|
syl13anc |
|
39 |
1 3 2 4
|
lmodvscl |
|
40 |
6 7 8 39
|
syl3anc |
|
41 |
1 3 2 4
|
lmodvscl |
|
42 |
6 7 9 41
|
syl3anc |
|
43 |
1 10 5 3 2 11 12
|
lmodvsubval2 |
|
44 |
6 40 42 43
|
syl3anc |
|
45 |
34 38 44
|
3eqtr4rd |
|
46 |
15 45
|
eqtr4d |
|