Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Definition and basic properties
lmodsubeq0
Metamath Proof Explorer
Description: If the difference between two vectors is zero, they are equal.
( hvsubeq0 analog.) (Contributed by NM , 31-Mar-2014) (Revised by Mario Carneiro , 19-Jun-2014)
Ref
Expression
Hypotheses
lmodsubeq0.v
⊢ V = Base W
lmodsubeq0.o
⊢ 0 ˙ = 0 W
lmodsubeq0.m
⊢ - ˙ = - W
Assertion
lmodsubeq0
⊢ W ∈ LMod ∧ A ∈ V ∧ B ∈ V → A - ˙ B = 0 ˙ ↔ A = B
Proof
Step
Hyp
Ref
Expression
1
lmodsubeq0.v
⊢ V = Base W
2
lmodsubeq0.o
⊢ 0 ˙ = 0 W
3
lmodsubeq0.m
⊢ - ˙ = - W
4
lmodgrp
⊢ W ∈ LMod → W ∈ Grp
5
1 2 3
grpsubeq0
⊢ W ∈ Grp ∧ A ∈ V ∧ B ∈ V → A - ˙ B = 0 ˙ ↔ A = B
6
4 5
syl3an1
⊢ W ∈ LMod ∧ A ∈ V ∧ B ∈ V → A - ˙ B = 0 ˙ ↔ A = B