Metamath Proof Explorer


Theorem lmodsubeq0

Description: If the difference between two vectors is zero, they are equal. ( hvsubeq0 analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodsubeq0.v V = Base W
lmodsubeq0.o 0 ˙ = 0 W
lmodsubeq0.m - ˙ = - W
Assertion lmodsubeq0 W LMod A V B V A - ˙ B = 0 ˙ A = B

Proof

Step Hyp Ref Expression
1 lmodsubeq0.v V = Base W
2 lmodsubeq0.o 0 ˙ = 0 W
3 lmodsubeq0.m - ˙ = - W
4 lmodgrp W LMod W Grp
5 1 2 3 grpsubeq0 W Grp A V B V A - ˙ B = 0 ˙ A = B
6 4 5 syl3an1 W LMod A V B V A - ˙ B = 0 ˙ A = B