Metamath Proof Explorer


Theorem lmodsubid

Description: Subtraction of a vector from itself. ( hvsubid analog.) (Contributed by NM, 16-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodsubeq0.v V = Base W
lmodsubeq0.o 0 ˙ = 0 W
lmodsubeq0.m - ˙ = - W
Assertion lmodsubid W LMod A V A - ˙ A = 0 ˙

Proof

Step Hyp Ref Expression
1 lmodsubeq0.v V = Base W
2 lmodsubeq0.o 0 ˙ = 0 W
3 lmodsubeq0.m - ˙ = - W
4 lmodgrp W LMod W Grp
5 1 2 3 grpsubid W Grp A V A - ˙ A = 0 ˙
6 4 5 sylan W LMod A V A - ˙ A = 0 ˙