Metamath Proof Explorer


Theorem lmodvaddsub4

Description: Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v V = Base W
lmod4.p + ˙ = + W
lmodvaddsub4.m - ˙ = - W
Assertion lmodvaddsub4 W LMod A V B V C V D V A + ˙ B = C + ˙ D A - ˙ C = D - ˙ B

Proof

Step Hyp Ref Expression
1 lmod4.v V = Base W
2 lmod4.p + ˙ = + W
3 lmodvaddsub4.m - ˙ = - W
4 lmodabl W LMod W Abel
5 1 2 3 abladdsub4 W Abel A V B V C V D V A + ˙ B = C + ˙ D A - ˙ C = D - ˙ B
6 4 5 syl3an1 W LMod A V B V C V D V A + ˙ B = C + ˙ D A - ˙ C = D - ˙ B