Metamath Proof Explorer


Theorem lmodvnegcl

Description: Closure of vector negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvnegcl.v V = Base W
lmodvnegcl.n N = inv g W
Assertion lmodvnegcl W LMod X V N X V

Proof

Step Hyp Ref Expression
1 lmodvnegcl.v V = Base W
2 lmodvnegcl.n N = inv g W
3 lmodgrp W LMod W Grp
4 1 2 grpinvcl W Grp X V N X V
5 3 4 sylan W LMod X V N X V