Metamath Proof Explorer


Theorem lmodvnegid

Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvnegid.v V = Base W
lmodvnegid.p + ˙ = + W
lmodvnegid.z 0 ˙ = 0 W
lmodvnegid.n N = inv g W
Assertion lmodvnegid W LMod X V X + ˙ N X = 0 ˙

Proof

Step Hyp Ref Expression
1 lmodvnegid.v V = Base W
2 lmodvnegid.p + ˙ = + W
3 lmodvnegid.z 0 ˙ = 0 W
4 lmodvnegid.n N = inv g W
5 lmodgrp W LMod W Grp
6 1 2 3 4 grprinv W Grp X V X + ˙ N X = 0 ˙
7 5 6 sylan W LMod X V X + ˙ N X = 0 ˙