Metamath Proof Explorer


Theorem lmodvnegid

Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvnegid.v V=BaseW
lmodvnegid.p +˙=+W
lmodvnegid.z 0˙=0W
lmodvnegid.n N=invgW
Assertion lmodvnegid WLModXVX+˙NX=0˙

Proof

Step Hyp Ref Expression
1 lmodvnegid.v V=BaseW
2 lmodvnegid.p +˙=+W
3 lmodvnegid.z 0˙=0W
4 lmodvnegid.n N=invgW
5 lmodgrp WLModWGrp
6 1 2 3 4 grprinv WGrpXVX+˙NX=0˙
7 5 6 sylan WLModXVX+˙NX=0˙