Metamath Proof Explorer


Theorem lmodvnpcan

Description: Cancellation law for vector subtraction ( npcan analog). (Contributed by NM, 19-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v V = Base W
lmod4.p + ˙ = + W
lmodvaddsub4.m - ˙ = - W
Assertion lmodvnpcan W LMod A V B V A - ˙ B + ˙ B = A

Proof

Step Hyp Ref Expression
1 lmod4.v V = Base W
2 lmod4.p + ˙ = + W
3 lmodvaddsub4.m - ˙ = - W
4 lmodgrp W LMod W Grp
5 1 2 3 grpnpcan W Grp A V B V A - ˙ B + ˙ B = A
6 4 5 syl3an1 W LMod A V B V A - ˙ B + ˙ B = A