Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Definition and basic properties
lmodvpncan
Metamath Proof Explorer
Description: Addition/subtraction cancellation law for vectors. ( hvpncan analog.)
(Contributed by NM , 16-Apr-2014) (Revised by Mario Carneiro , 19-Jun-2014)
Ref
Expression
Hypotheses
lmod4.v
⊢ V = Base W
lmod4.p
⊢ + ˙ = + W
lmodvaddsub4.m
⊢ - ˙ = - W
Assertion
lmodvpncan
⊢ W ∈ LMod ∧ A ∈ V ∧ B ∈ V → A + ˙ B - ˙ B = A
Proof
Step
Hyp
Ref
Expression
1
lmod4.v
⊢ V = Base W
2
lmod4.p
⊢ + ˙ = + W
3
lmodvaddsub4.m
⊢ - ˙ = - W
4
lmodgrp
⊢ W ∈ LMod → W ∈ Grp
5
1 2 3
grppncan
⊢ W ∈ Grp ∧ A ∈ V ∧ B ∈ V → A + ˙ B - ˙ B = A
6
4 5
syl3an1
⊢ W ∈ LMod ∧ A ∈ V ∧ B ∈ V → A + ˙ B - ˙ B = A