Metamath Proof Explorer


Theorem lmodvpncan

Description: Addition/subtraction cancellation law for vectors. ( hvpncan analog.) (Contributed by NM, 16-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v V = Base W
lmod4.p + ˙ = + W
lmodvaddsub4.m - ˙ = - W
Assertion lmodvpncan W LMod A V B V A + ˙ B - ˙ B = A

Proof

Step Hyp Ref Expression
1 lmod4.v V = Base W
2 lmod4.p + ˙ = + W
3 lmodvaddsub4.m - ˙ = - W
4 lmodgrp W LMod W Grp
5 1 2 3 grppncan W Grp A V B V A + ˙ B - ˙ B = A
6 4 5 syl3an1 W LMod A V B V A + ˙ B - ˙ B = A