Metamath Proof Explorer


Theorem lmodvs0

Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. ( hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvs0.f F = Scalar W
lmodvs0.s · ˙ = W
lmodvs0.k K = Base F
lmodvs0.z 0 ˙ = 0 W
Assertion lmodvs0 W LMod X K X · ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 lmodvs0.f F = Scalar W
2 lmodvs0.s · ˙ = W
3 lmodvs0.k K = Base F
4 lmodvs0.z 0 ˙ = 0 W
5 1 lmodring W LMod F Ring
6 eqid F = F
7 eqid 0 F = 0 F
8 3 6 7 ringrz F Ring X K X F 0 F = 0 F
9 5 8 sylan W LMod X K X F 0 F = 0 F
10 9 oveq1d W LMod X K X F 0 F · ˙ 0 ˙ = 0 F · ˙ 0 ˙
11 simpl W LMod X K W LMod
12 simpr W LMod X K X K
13 5 adantr W LMod X K F Ring
14 3 7 ring0cl F Ring 0 F K
15 13 14 syl W LMod X K 0 F K
16 eqid Base W = Base W
17 16 4 lmod0vcl W LMod 0 ˙ Base W
18 17 adantr W LMod X K 0 ˙ Base W
19 16 1 2 3 6 lmodvsass W LMod X K 0 F K 0 ˙ Base W X F 0 F · ˙ 0 ˙ = X · ˙ 0 F · ˙ 0 ˙
20 11 12 15 18 19 syl13anc W LMod X K X F 0 F · ˙ 0 ˙ = X · ˙ 0 F · ˙ 0 ˙
21 16 1 2 7 4 lmod0vs W LMod 0 ˙ Base W 0 F · ˙ 0 ˙ = 0 ˙
22 18 21 syldan W LMod X K 0 F · ˙ 0 ˙ = 0 ˙
23 22 oveq2d W LMod X K X · ˙ 0 F · ˙ 0 ˙ = X · ˙ 0 ˙
24 20 23 eqtrd W LMod X K X F 0 F · ˙ 0 ˙ = X · ˙ 0 ˙
25 10 24 22 3eqtr3d W LMod X K X · ˙ 0 ˙ = 0 ˙