Metamath Proof Explorer


Theorem lmodvscld

Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025)

Ref Expression
Hypotheses lmodvscld.v V = Base W
lmodvscld.f F = Scalar W
lmodvscld.s · ˙ = W
lmodvscld.k K = Base F
lmodvscld.w φ W LMod
lmodvscld.r φ R K
lmodvscld.x φ X V
Assertion lmodvscld φ R · ˙ X V

Proof

Step Hyp Ref Expression
1 lmodvscld.v V = Base W
2 lmodvscld.f F = Scalar W
3 lmodvscld.s · ˙ = W
4 lmodvscld.k K = Base F
5 lmodvscld.w φ W LMod
6 lmodvscld.r φ R K
7 lmodvscld.x φ X V
8 1 2 3 4 lmodvscl W LMod R K X V R · ˙ X V
9 5 6 7 8 syl3anc φ R · ˙ X V