Metamath Proof Explorer


Theorem lmodvsinv2

Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses lmodvsinv2.b B = Base W
lmodvsinv2.f F = Scalar W
lmodvsinv2.s · ˙ = W
lmodvsinv2.n N = inv g W
lmodvsinv2.k K = Base F
Assertion lmodvsinv2 W LMod R K X B R · ˙ N X = N R · ˙ X

Proof

Step Hyp Ref Expression
1 lmodvsinv2.b B = Base W
2 lmodvsinv2.f F = Scalar W
3 lmodvsinv2.s · ˙ = W
4 lmodvsinv2.n N = inv g W
5 lmodvsinv2.k K = Base F
6 simp1 W LMod R K X B W LMod
7 lmodgrp W LMod W Grp
8 6 7 syl W LMod R K X B W Grp
9 simp3 W LMod R K X B X B
10 eqid + W = + W
11 eqid 0 W = 0 W
12 1 10 11 4 grprinv W Grp X B X + W N X = 0 W
13 8 9 12 syl2anc W LMod R K X B X + W N X = 0 W
14 13 oveq2d W LMod R K X B R · ˙ X + W N X = R · ˙ 0 W
15 simp2 W LMod R K X B R K
16 1 4 grpinvcl W Grp X B N X B
17 8 9 16 syl2anc W LMod R K X B N X B
18 1 10 2 3 5 lmodvsdi W LMod R K X B N X B R · ˙ X + W N X = R · ˙ X + W R · ˙ N X
19 6 15 9 17 18 syl13anc W LMod R K X B R · ˙ X + W N X = R · ˙ X + W R · ˙ N X
20 2 3 5 11 lmodvs0 W LMod R K R · ˙ 0 W = 0 W
21 6 15 20 syl2anc W LMod R K X B R · ˙ 0 W = 0 W
22 14 19 21 3eqtr3d W LMod R K X B R · ˙ X + W R · ˙ N X = 0 W
23 1 2 3 5 lmodvscl W LMod R K X B R · ˙ X B
24 1 2 3 5 lmodvscl W LMod R K N X B R · ˙ N X B
25 6 15 17 24 syl3anc W LMod R K X B R · ˙ N X B
26 1 10 11 4 grpinvid1 W Grp R · ˙ X B R · ˙ N X B N R · ˙ X = R · ˙ N X R · ˙ X + W R · ˙ N X = 0 W
27 8 23 25 26 syl3anc W LMod R K X B N R · ˙ X = R · ˙ N X R · ˙ X + W R · ˙ N X = 0 W
28 22 27 mpbird W LMod R K X B N R · ˙ X = R · ˙ N X
29 28 eqcomd W LMod R K X B R · ˙ N X = N R · ˙ X