Metamath Proof Explorer


Theorem lmodvsneg

Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Hypotheses lmodvsneg.b B = Base W
lmodvsneg.f F = Scalar W
lmodvsneg.s · ˙ = W
lmodvsneg.n N = inv g W
lmodvsneg.k K = Base F
lmodvsneg.m M = inv g F
lmodvsneg.w φ W LMod
lmodvsneg.x φ X B
lmodvsneg.r φ R K
Assertion lmodvsneg φ N R · ˙ X = M R · ˙ X

Proof

Step Hyp Ref Expression
1 lmodvsneg.b B = Base W
2 lmodvsneg.f F = Scalar W
3 lmodvsneg.s · ˙ = W
4 lmodvsneg.n N = inv g W
5 lmodvsneg.k K = Base F
6 lmodvsneg.m M = inv g F
7 lmodvsneg.w φ W LMod
8 lmodvsneg.x φ X B
9 lmodvsneg.r φ R K
10 2 lmodring W LMod F Ring
11 7 10 syl φ F Ring
12 ringgrp F Ring F Grp
13 11 12 syl φ F Grp
14 eqid 1 F = 1 F
15 5 14 ringidcl F Ring 1 F K
16 11 15 syl φ 1 F K
17 5 6 grpinvcl F Grp 1 F K M 1 F K
18 13 16 17 syl2anc φ M 1 F K
19 eqid F = F
20 1 2 3 5 19 lmodvsass W LMod M 1 F K R K X B M 1 F F R · ˙ X = M 1 F · ˙ R · ˙ X
21 7 18 9 8 20 syl13anc φ M 1 F F R · ˙ X = M 1 F · ˙ R · ˙ X
22 5 19 14 6 11 9 ringnegl φ M 1 F F R = M R
23 22 oveq1d φ M 1 F F R · ˙ X = M R · ˙ X
24 1 2 3 5 lmodvscl W LMod R K X B R · ˙ X B
25 7 9 8 24 syl3anc φ R · ˙ X B
26 1 4 2 3 14 6 lmodvneg1 W LMod R · ˙ X B M 1 F · ˙ R · ˙ X = N R · ˙ X
27 7 25 26 syl2anc φ M 1 F · ˙ R · ˙ X = N R · ˙ X
28 21 23 27 3eqtr3rd φ N R · ˙ X = M R · ˙ X