Metamath Proof Explorer


Theorem lmodvsubadd

Description: Relationship between vector subtraction and addition. ( hvsubadd analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v V = Base W
lmod4.p + ˙ = + W
lmodvaddsub4.m - ˙ = - W
Assertion lmodvsubadd W LMod A V B V C V A - ˙ B = C B + ˙ C = A

Proof

Step Hyp Ref Expression
1 lmod4.v V = Base W
2 lmod4.p + ˙ = + W
3 lmodvaddsub4.m - ˙ = - W
4 lmodabl W LMod W Abel
5 1 2 3 ablsubadd W Abel A V B V C V A - ˙ B = C B + ˙ C = A
6 4 5 sylan W LMod A V B V C V A - ˙ B = C B + ˙ C = A