Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Definition and basic properties
lmodvsubadd
Metamath Proof Explorer
Description: Relationship between vector subtraction and addition. ( hvsubadd analog.) (Contributed by NM , 31-Mar-2014) (Revised by Mario Carneiro , 19-Jun-2014)
Ref
Expression
Hypotheses
lmod4.v
⊢ V = Base W
lmod4.p
⊢ + ˙ = + W
lmodvaddsub4.m
⊢ - ˙ = - W
Assertion
lmodvsubadd
⊢ W ∈ LMod ∧ A ∈ V ∧ B ∈ V ∧ C ∈ V → A - ˙ B = C ↔ B + ˙ C = A
Proof
Step
Hyp
Ref
Expression
1
lmod4.v
⊢ V = Base W
2
lmod4.p
⊢ + ˙ = + W
3
lmodvaddsub4.m
⊢ - ˙ = - W
4
lmodabl
⊢ W ∈ LMod → W ∈ Abel
5
1 2 3
ablsubadd
⊢ W ∈ Abel ∧ A ∈ V ∧ B ∈ V ∧ C ∈ V → A - ˙ B = C ↔ B + ˙ C = A
6
4 5
sylan
⊢ W ∈ LMod ∧ A ∈ V ∧ B ∈ V ∧ C ∈ V → A - ˙ B = C ↔ B + ˙ C = A