Metamath Proof Explorer


Theorem lnatexN

Description: There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lnatex.b B = Base K
lnatex.l ˙ = K
lnatex.a A = Atoms K
lnatex.n N = Lines K
lnatex.m M = pmap K
Assertion lnatexN K HL X B M X N q A q P q ˙ X

Proof

Step Hyp Ref Expression
1 lnatex.b B = Base K
2 lnatex.l ˙ = K
3 lnatex.a A = Atoms K
4 lnatex.n N = Lines K
5 lnatex.m M = pmap K
6 eqid join K = join K
7 1 6 3 4 5 isline3 K HL X B M X N r A s A r s X = r join K s
8 7 biimp3a K HL X B M X N r A s A r s X = r join K s
9 simpl2r K HL X B M X N r A s A r s X = r join K s r = P s A
10 simpl3l K HL X B M X N r A s A r s X = r join K s r = P r s
11 10 necomd K HL X B M X N r A s A r s X = r join K s r = P s r
12 simpr K HL X B M X N r A s A r s X = r join K s r = P r = P
13 11 12 neeqtrd K HL X B M X N r A s A r s X = r join K s r = P s P
14 simpl11 K HL X B M X N r A s A r s X = r join K s r = P K HL
15 simpl2l K HL X B M X N r A s A r s X = r join K s r = P r A
16 2 6 3 hlatlej2 K HL r A s A s ˙ r join K s
17 14 15 9 16 syl3anc K HL X B M X N r A s A r s X = r join K s r = P s ˙ r join K s
18 simpl3r K HL X B M X N r A s A r s X = r join K s r = P X = r join K s
19 17 18 breqtrrd K HL X B M X N r A s A r s X = r join K s r = P s ˙ X
20 neeq1 q = s q P s P
21 breq1 q = s q ˙ X s ˙ X
22 20 21 anbi12d q = s q P q ˙ X s P s ˙ X
23 22 rspcev s A s P s ˙ X q A q P q ˙ X
24 9 13 19 23 syl12anc K HL X B M X N r A s A r s X = r join K s r = P q A q P q ˙ X
25 simpl2l K HL X B M X N r A s A r s X = r join K s r P r A
26 simpr K HL X B M X N r A s A r s X = r join K s r P r P
27 simpl11 K HL X B M X N r A s A r s X = r join K s r P K HL
28 simpl2r K HL X B M X N r A s A r s X = r join K s r P s A
29 2 6 3 hlatlej1 K HL r A s A r ˙ r join K s
30 27 25 28 29 syl3anc K HL X B M X N r A s A r s X = r join K s r P r ˙ r join K s
31 simpl3r K HL X B M X N r A s A r s X = r join K s r P X = r join K s
32 30 31 breqtrrd K HL X B M X N r A s A r s X = r join K s r P r ˙ X
33 neeq1 q = r q P r P
34 breq1 q = r q ˙ X r ˙ X
35 33 34 anbi12d q = r q P q ˙ X r P r ˙ X
36 35 rspcev r A r P r ˙ X q A q P q ˙ X
37 25 26 32 36 syl12anc K HL X B M X N r A s A r s X = r join K s r P q A q P q ˙ X
38 24 37 pm2.61dane K HL X B M X N r A s A r s X = r join K s q A q P q ˙ X
39 38 3exp K HL X B M X N r A s A r s X = r join K s q A q P q ˙ X
40 39 rexlimdvv K HL X B M X N r A s A r s X = r join K s q A q P q ˙ X
41 8 40 mpd K HL X B M X N q A q P q ˙ X