Metamath Proof Explorer


Theorem lncnopbd

Description: A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lncnopbd T LinOp ContOp T BndLinOp

Proof

Step Hyp Ref Expression
1 elin T LinOp ContOp T LinOp T ContOp
2 lnopcnbd T LinOp T ContOp T BndLinOp
3 2 biimpa T LinOp T ContOp T BndLinOp
4 bdopln T BndLinOp T LinOp
5 2 biimparc T BndLinOp T LinOp T ContOp
6 4 5 mpdan T BndLinOp T ContOp
7 4 6 jca T BndLinOp T LinOp T ContOp
8 3 7 impbii T LinOp T ContOp T BndLinOp
9 1 8 bitri T LinOp ContOp T BndLinOp