Step |
Hyp |
Ref |
Expression |
1 |
|
lncon.1 |
|
2 |
|
lncon.2 |
|
3 |
|
lncon.3 |
|
4 |
|
lncon.4 |
|
5 |
|
lncon.5 |
|
6 |
2
|
ralrimiva |
|
7 |
|
oveq1 |
|
8 |
7
|
breq2d |
|
9 |
8
|
ralbidv |
|
10 |
9
|
rspcev |
|
11 |
1 6 10
|
syl2anc |
|
12 |
|
arch |
|
13 |
12
|
adantr |
|
14 |
|
nnre |
|
15 |
|
simplll |
|
16 |
|
simpllr |
|
17 |
|
normcl |
|
18 |
17
|
adantl |
|
19 |
|
normge0 |
|
20 |
19
|
adantl |
|
21 |
|
ltle |
|
22 |
21
|
imp |
|
23 |
22
|
adantr |
|
24 |
15 16 18 20 23
|
lemul1ad |
|
25 |
4
|
adantl |
|
26 |
|
simpll |
|
27 |
|
remulcl |
|
28 |
26 17 27
|
syl2an |
|
29 |
|
simplr |
|
30 |
|
remulcl |
|
31 |
29 17 30
|
syl2an |
|
32 |
|
letr |
|
33 |
25 28 31 32
|
syl3anc |
|
34 |
24 33
|
mpan2d |
|
35 |
34
|
ralimdva |
|
36 |
35
|
impancom |
|
37 |
36
|
an32s |
|
38 |
14 37
|
sylan2 |
|
39 |
38
|
reximdva |
|
40 |
13 39
|
mpd |
|
41 |
40
|
rexlimiva |
|
42 |
|
simprr |
|
43 |
|
simpll |
|
44 |
43
|
nnrpd |
|
45 |
42 44
|
rpdivcld |
|
46 |
|
simprr |
|
47 |
|
simprll |
|
48 |
|
hvsubcl |
|
49 |
46 47 48
|
syl2anc |
|
50 |
|
2fveq3 |
|
51 |
|
fveq2 |
|
52 |
51
|
oveq2d |
|
53 |
50 52
|
breq12d |
|
54 |
53
|
rspcva |
|
55 |
49 54
|
sylan |
|
56 |
55
|
an32s |
|
57 |
50
|
eleq1d |
|
58 |
57 4
|
vtoclga |
|
59 |
49 58
|
syl |
|
60 |
14
|
adantr |
|
61 |
|
normcl |
|
62 |
49 61
|
syl |
|
63 |
|
remulcl |
|
64 |
60 62 63
|
syl2anc |
|
65 |
|
simprlr |
|
66 |
65
|
rpred |
|
67 |
|
lelttr |
|
68 |
59 64 66 67
|
syl3anc |
|
69 |
68
|
adantlr |
|
70 |
56 69
|
mpand |
|
71 |
|
nnrp |
|
72 |
71
|
rpregt0d |
|
73 |
72
|
adantr |
|
74 |
|
ltmuldiv2 |
|
75 |
62 66 73 74
|
syl3anc |
|
76 |
75
|
adantlr |
|
77 |
46 47 5
|
syl2anc |
|
78 |
77
|
adantlr |
|
79 |
78
|
fveq2d |
|
80 |
79
|
breq1d |
|
81 |
70 76 80
|
3imtr3d |
|
82 |
81
|
anassrs |
|
83 |
82
|
ralrimiva |
|
84 |
|
breq2 |
|
85 |
84
|
rspceaimv |
|
86 |
45 83 85
|
syl2anc |
|
87 |
86
|
ralrimivva |
|
88 |
87
|
rexlimiva |
|
89 |
88 3
|
sylibr |
|
90 |
41 89
|
syl |
|
91 |
11 90
|
impbii |
|