Metamath Proof Explorer


Theorem lncvrat

Description: A line covers the atoms it contains. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses lncvrat.b B = Base K
lncvrat.l ˙ = K
lncvrat.c C = K
lncvrat.a A = Atoms K
lncvrat.n N = Lines K
lncvrat.m M = pmap K
Assertion lncvrat K HL X B P A M X N P ˙ X P C X

Proof

Step Hyp Ref Expression
1 lncvrat.b B = Base K
2 lncvrat.l ˙ = K
3 lncvrat.c C = K
4 lncvrat.a A = Atoms K
5 lncvrat.n N = Lines K
6 lncvrat.m M = pmap K
7 simprl K HL X B P A M X N P ˙ X M X N
8 simpl1 K HL X B P A M X N P ˙ X K HL
9 simpl2 K HL X B P A M X N P ˙ X X B
10 eqid join K = join K
11 1 10 4 5 6 isline3 K HL X B M X N q A r A q r X = q join K r
12 8 9 11 syl2anc K HL X B P A M X N P ˙ X M X N q A r A q r X = q join K r
13 7 12 mpbid K HL X B P A M X N P ˙ X q A r A q r X = q join K r
14 simp1l1 K HL X B P A M X N P ˙ X q A r A q r X = q join K r K HL
15 simp1l3 K HL X B P A M X N P ˙ X q A r A q r X = q join K r P A
16 simp2l K HL X B P A M X N P ˙ X q A r A q r X = q join K r q A
17 simp2r K HL X B P A M X N P ˙ X q A r A q r X = q join K r r A
18 simp3l K HL X B P A M X N P ˙ X q A r A q r X = q join K r q r
19 simp1rr K HL X B P A M X N P ˙ X q A r A q r X = q join K r P ˙ X
20 simp3r K HL X B P A M X N P ˙ X q A r A q r X = q join K r X = q join K r
21 19 20 breqtrd K HL X B P A M X N P ˙ X q A r A q r X = q join K r P ˙ q join K r
22 2 10 3 4 atcvrj2 K HL P A q A r A q r P ˙ q join K r P C q join K r
23 14 15 16 17 18 21 22 syl132anc K HL X B P A M X N P ˙ X q A r A q r X = q join K r P C q join K r
24 23 20 breqtrrd K HL X B P A M X N P ˙ X q A r A q r X = q join K r P C X
25 24 3exp K HL X B P A M X N P ˙ X q A r A q r X = q join K r P C X
26 25 rexlimdvv K HL X B P A M X N P ˙ X q A r A q r X = q join K r P C X
27 13 26 mpd K HL X B P A M X N P ˙ X P C X