Step |
Hyp |
Ref |
Expression |
1 |
|
tglngval.p |
|
2 |
|
tglngval.l |
|
3 |
|
tglngval.i |
|
4 |
|
tglngval.g |
|
5 |
|
tglngval.x |
|
6 |
|
tglngval.y |
|
7 |
|
tgcolg.z |
|
8 |
|
lnxfr.r |
|
9 |
|
lnxfr.a |
|
10 |
|
lnxfr.b |
|
11 |
|
lnxfr.d |
|
12 |
|
lnext.1 |
|
13 |
|
lnext.2 |
|
14 |
1 11 3 4 9 10 6 7
|
axtgsegcon |
|
15 |
14
|
adantr |
|
16 |
4
|
ad3antrrr |
|
17 |
5
|
ad3antrrr |
|
18 |
6
|
ad3antrrr |
|
19 |
7
|
ad3antrrr |
|
20 |
9
|
ad3antrrr |
|
21 |
10
|
ad3antrrr |
|
22 |
|
simplr |
|
23 |
13
|
ad3antrrr |
|
24 |
|
simprr |
|
25 |
24
|
eqcomd |
|
26 |
|
simpllr |
|
27 |
|
simprl |
|
28 |
1 11 3 16 17 18 19 20 21 22 26 27 23 25
|
tgcgrextend |
|
29 |
1 11 3 16 17 19 20 22 28
|
tgcgrcomlr |
|
30 |
1 11 8 16 17 18 19 20 21 22 23 25 29
|
trgcgr |
|
31 |
30
|
ex |
|
32 |
31
|
reximdva |
|
33 |
15 32
|
mpd |
|
34 |
1 11 3 4 10 9 5 7
|
axtgsegcon |
|
35 |
34
|
adantr |
|
36 |
4
|
ad3antrrr |
|
37 |
5
|
ad3antrrr |
|
38 |
6
|
ad3antrrr |
|
39 |
7
|
ad3antrrr |
|
40 |
9
|
ad3antrrr |
|
41 |
10
|
ad3antrrr |
|
42 |
|
simplr |
|
43 |
13
|
ad3antrrr |
|
44 |
|
simpllr |
|
45 |
|
simprl |
|
46 |
1 11 3 36 37 38 40 41 43
|
tgcgrcomlr |
|
47 |
|
simprr |
|
48 |
47
|
eqcomd |
|
49 |
1 11 3 36 38 37 39 41 40 42 44 45 46 48
|
tgcgrextend |
|
50 |
1 11 3 36 37 39 40 42 48
|
tgcgrcomlr |
|
51 |
1 11 8 36 37 38 39 40 41 42 43 49 50
|
trgcgr |
|
52 |
51
|
ex |
|
53 |
52
|
reximdva |
|
54 |
35 53
|
mpd |
|
55 |
4
|
adantr |
|
56 |
5
|
adantr |
|
57 |
7
|
adantr |
|
58 |
6
|
adantr |
|
59 |
9
|
adantr |
|
60 |
10
|
adantr |
|
61 |
|
simpr |
|
62 |
13
|
adantr |
|
63 |
1 11 3 8 55 56 57 58 59 60 61 62
|
tgcgrxfr |
|
64 |
4
|
ad3antrrr |
|
65 |
5
|
ad3antrrr |
|
66 |
7
|
ad3antrrr |
|
67 |
6
|
ad3antrrr |
|
68 |
9
|
ad3antrrr |
|
69 |
|
simplr |
|
70 |
10
|
ad3antrrr |
|
71 |
|
simprr |
|
72 |
1 11 3 8 64 65 66 67 68 69 70 71
|
cgr3swap23 |
|
73 |
72
|
ex |
|
74 |
73
|
reximdva |
|
75 |
63 74
|
mpd |
|
76 |
1 2 3 4 5 7 6
|
tgcolg |
|
77 |
12 76
|
mpbid |
|
78 |
33 54 75 77
|
mpjao3dan |
|