Metamath Proof Explorer


Theorem lnfn0

Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfn0 T LinFn T 0 = 0

Proof

Step Hyp Ref Expression
1 fveq1 T = if T LinFn T × 0 T 0 = if T LinFn T × 0 0
2 1 eqeq1d T = if T LinFn T × 0 T 0 = 0 if T LinFn T × 0 0 = 0
3 0lnfn × 0 LinFn
4 3 elimel if T LinFn T × 0 LinFn
5 4 lnfn0i if T LinFn T × 0 0 = 0
6 2 5 dedth T LinFn T 0 = 0