Metamath Proof Explorer


Theorem lnfnaddmuli

Description: Sum/product property of a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 T LinFn
Assertion lnfnaddmuli A B C T B + A C = T B + A T C

Proof

Step Hyp Ref Expression
1 lnfnl.1 T LinFn
2 hvmulcl A C A C
3 1 lnfnaddi B A C T B + A C = T B + T A C
4 2 3 sylan2 B A C T B + A C = T B + T A C
5 4 3impb B A C T B + A C = T B + T A C
6 5 3com12 A B C T B + A C = T B + T A C
7 1 lnfnmuli A C T A C = A T C
8 7 3adant2 A B C T A C = A T C
9 8 oveq2d A B C T B + T A C = T B + A T C
10 6 9 eqtrd A B C T B + A C = T B + A T C