Metamath Proof Explorer


Theorem lnfncnbd

Description: A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfncnbd T LinFn T ContFn norm fn T

Proof

Step Hyp Ref Expression
1 nmcfnex T LinFn T ContFn norm fn T
2 1 ex T LinFn T ContFn norm fn T
3 simpr T LinFn norm fn T norm fn T
4 nmbdfnlb T LinFn norm fn T y T y norm fn T norm y
5 4 3expa T LinFn norm fn T y T y norm fn T norm y
6 5 ralrimiva T LinFn norm fn T y T y norm fn T norm y
7 oveq1 x = norm fn T x norm y = norm fn T norm y
8 7 breq2d x = norm fn T T y x norm y T y norm fn T norm y
9 8 ralbidv x = norm fn T y T y x norm y y T y norm fn T norm y
10 9 rspcev norm fn T y T y norm fn T norm y x y T y x norm y
11 3 6 10 syl2anc T LinFn norm fn T x y T y x norm y
12 11 ex T LinFn norm fn T x y T y x norm y
13 lnfncon T LinFn T ContFn x y T y x norm y
14 12 13 sylibrd T LinFn norm fn T T ContFn
15 2 14 impbid T LinFn T ContFn norm fn T