Metamath Proof Explorer


Theorem lnfnconi

Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypothesis lnfncon.1 T LinFn
Assertion lnfnconi T ContFn x y T y x norm y

Proof

Step Hyp Ref Expression
1 lnfncon.1 T LinFn
2 nmcfnex T LinFn T ContFn norm fn T
3 1 2 mpan T ContFn norm fn T
4 nmcfnlb T LinFn T ContFn y T y norm fn T norm y
5 1 4 mp3an1 T ContFn y T y norm fn T norm y
6 1 lnfnfi T :
7 elcnfn T ContFn T : x z + y + w norm w - x < y T w T x < z
8 6 7 mpbiran T ContFn x z + y + w norm w - x < y T w T x < z
9 6 ffvelrni y T y
10 9 abscld y T y
11 1 lnfnsubi w x T w - x = T w T x
12 3 5 8 10 11 lnconi T ContFn x y T y x norm y