Metamath Proof Explorer


Theorem lnfnf

Description: A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfnf T LinFn T :

Proof

Step Hyp Ref Expression
1 ellnfn T LinFn T : x y z T x y + z = x T y + T z
2 1 simplbi T LinFn T :