Metamath Proof Explorer


Theorem lnfnmul

Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfnmul T LinFn A B T A B = A T B

Proof

Step Hyp Ref Expression
1 fveq1 T = if T LinFn T × 0 T A B = if T LinFn T × 0 A B
2 fveq1 T = if T LinFn T × 0 T B = if T LinFn T × 0 B
3 2 oveq2d T = if T LinFn T × 0 A T B = A if T LinFn T × 0 B
4 1 3 eqeq12d T = if T LinFn T × 0 T A B = A T B if T LinFn T × 0 A B = A if T LinFn T × 0 B
5 4 imbi2d T = if T LinFn T × 0 A B T A B = A T B A B if T LinFn T × 0 A B = A if T LinFn T × 0 B
6 0lnfn × 0 LinFn
7 6 elimel if T LinFn T × 0 LinFn
8 7 lnfnmuli A B if T LinFn T × 0 A B = A if T LinFn T × 0 B
9 5 8 dedth T LinFn A B T A B = A T B
10 9 3impib T LinFn A B T A B = A T B