Metamath Proof Explorer


Theorem lnfnmul

Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfnmul TLinFnABTAB=ATB

Proof

Step Hyp Ref Expression
1 fveq1 T=ifTLinFnT×0TAB=ifTLinFnT×0AB
2 fveq1 T=ifTLinFnT×0TB=ifTLinFnT×0B
3 2 oveq2d T=ifTLinFnT×0ATB=AifTLinFnT×0B
4 1 3 eqeq12d T=ifTLinFnT×0TAB=ATBifTLinFnT×0AB=AifTLinFnT×0B
5 4 imbi2d T=ifTLinFnT×0ABTAB=ATBABifTLinFnT×0AB=AifTLinFnT×0B
6 0lnfn ×0LinFn
7 6 elimel ifTLinFnT×0LinFn
8 7 lnfnmuli ABifTLinFnT×0AB=AifTLinFnT×0B
9 5 8 dedth TLinFnABTAB=ATB
10 9 3impib TLinFnABTAB=ATB