Metamath Proof Explorer


Theorem lnjatN

Description: Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lnjat.b B = Base K
lnjat.l ˙ = K
lnjat.j ˙ = join K
lnjat.a A = Atoms K
lnjat.n N = Lines K
lnjat.m M = pmap K
Assertion lnjatN K HL X B P A M X N P ˙ X q A q P X = P ˙ q

Proof

Step Hyp Ref Expression
1 lnjat.b B = Base K
2 lnjat.l ˙ = K
3 lnjat.j ˙ = join K
4 lnjat.a A = Atoms K
5 lnjat.n N = Lines K
6 lnjat.m M = pmap K
7 simpl1 K HL X B P A M X N P ˙ X K HL
8 simpl2 K HL X B P A M X N P ˙ X X B
9 simprl K HL X B P A M X N P ˙ X M X N
10 1 2 4 5 6 lnatexN K HL X B M X N q A q P q ˙ X
11 7 8 9 10 syl3anc K HL X B P A M X N P ˙ X q A q P q ˙ X
12 simp3l K HL X B P A M X N P ˙ X q A q P q ˙ X q P
13 simp1l1 K HL X B P A M X N P ˙ X q A q P q ˙ X K HL
14 simp1l2 K HL X B P A M X N P ˙ X q A q P q ˙ X X B
15 simp1rl K HL X B P A M X N P ˙ X q A q P q ˙ X M X N
16 simp1l3 K HL X B P A M X N P ˙ X q A q P q ˙ X P A
17 simp2 K HL X B P A M X N P ˙ X q A q P q ˙ X q A
18 12 necomd K HL X B P A M X N P ˙ X q A q P q ˙ X P q
19 simp1rr K HL X B P A M X N P ˙ X q A q P q ˙ X P ˙ X
20 simp3r K HL X B P A M X N P ˙ X q A q P q ˙ X q ˙ X
21 1 2 3 4 5 6 lneq2at K HL X B M X N P A q A P q P ˙ X q ˙ X X = P ˙ q
22 13 14 15 16 17 18 19 20 21 syl332anc K HL X B P A M X N P ˙ X q A q P q ˙ X X = P ˙ q
23 12 22 jca K HL X B P A M X N P ˙ X q A q P q ˙ X q P X = P ˙ q
24 23 3exp K HL X B P A M X N P ˙ X q A q P q ˙ X q P X = P ˙ q
25 24 reximdvai K HL X B P A M X N P ˙ X q A q P q ˙ X q A q P X = P ˙ q
26 11 25 mpd K HL X B P A M X N P ˙ X q A q P X = P ˙ q