Metamath Proof Explorer


Theorem lnmepi

Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis lnmepi.b B = Base T
Assertion lnmepi F S LMHom T S LNoeM ran F = B T LNoeM

Proof

Step Hyp Ref Expression
1 lnmepi.b B = Base T
2 lmhmlmod2 F S LMHom T T LMod
3 2 3ad2ant1 F S LMHom T S LNoeM ran F = B T LMod
4 eqid Base S = Base S
5 4 1 lmhmf F S LMHom T F : Base S B
6 5 3ad2ant1 F S LMHom T S LNoeM ran F = B F : Base S B
7 simp3 F S LMHom T S LNoeM ran F = B ran F = B
8 dffo2 F : Base S onto B F : Base S B ran F = B
9 6 7 8 sylanbrc F S LMHom T S LNoeM ran F = B F : Base S onto B
10 eqid LSubSp T = LSubSp T
11 1 10 lssss a LSubSp T a B
12 foimacnv F : Base S onto B a B F F -1 a = a
13 9 11 12 syl2an F S LMHom T S LNoeM ran F = B a LSubSp T F F -1 a = a
14 13 oveq2d F S LMHom T S LNoeM ran F = B a LSubSp T T 𝑠 F F -1 a = T 𝑠 a
15 eqid T 𝑠 F F -1 a = T 𝑠 F F -1 a
16 eqid S 𝑠 F -1 a = S 𝑠 F -1 a
17 eqid LSubSp S = LSubSp S
18 simpl2 F S LMHom T S LNoeM ran F = B a LSubSp T S LNoeM
19 17 10 lmhmpreima F S LMHom T a LSubSp T F -1 a LSubSp S
20 19 3ad2antl1 F S LMHom T S LNoeM ran F = B a LSubSp T F -1 a LSubSp S
21 17 16 lnmlssfg S LNoeM F -1 a LSubSp S S 𝑠 F -1 a LFinGen
22 18 20 21 syl2anc F S LMHom T S LNoeM ran F = B a LSubSp T S 𝑠 F -1 a LFinGen
23 simpl1 F S LMHom T S LNoeM ran F = B a LSubSp T F S LMHom T
24 15 16 17 22 20 23 lmhmfgima F S LMHom T S LNoeM ran F = B a LSubSp T T 𝑠 F F -1 a LFinGen
25 14 24 eqeltrrd F S LMHom T S LNoeM ran F = B a LSubSp T T 𝑠 a LFinGen
26 25 ralrimiva F S LMHom T S LNoeM ran F = B a LSubSp T T 𝑠 a LFinGen
27 10 islnm T LNoeM T LMod a LSubSp T T 𝑠 a LFinGen
28 3 26 27 sylanbrc F S LMHom T S LNoeM ran F = B T LNoeM