Metamath Proof Explorer


Theorem lno0

Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 18-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lno0.1 X = BaseSet U
lno0.2 Y = BaseSet W
lno0.5 Q = 0 vec U
lno0.z Z = 0 vec W
lno0.7 L = U LnOp W
Assertion lno0 U NrmCVec W NrmCVec T L T Q = Z

Proof

Step Hyp Ref Expression
1 lno0.1 X = BaseSet U
2 lno0.2 Y = BaseSet W
3 lno0.5 Q = 0 vec U
4 lno0.z Z = 0 vec W
5 lno0.7 L = U LnOp W
6 neg1cn 1
7 6 a1i U NrmCVec W NrmCVec T L 1
8 1 3 nvzcl U NrmCVec Q X
9 8 3ad2ant1 U NrmCVec W NrmCVec T L Q X
10 7 9 9 3jca U NrmCVec W NrmCVec T L 1 Q X Q X
11 eqid + v U = + v U
12 eqid + v W = + v W
13 eqid 𝑠OLD U = 𝑠OLD U
14 eqid 𝑠OLD W = 𝑠OLD W
15 1 2 11 12 13 14 5 lnolin U NrmCVec W NrmCVec T L 1 Q X Q X T -1 𝑠OLD U Q + v U Q = -1 𝑠OLD W T Q + v W T Q
16 10 15 mpdan U NrmCVec W NrmCVec T L T -1 𝑠OLD U Q + v U Q = -1 𝑠OLD W T Q + v W T Q
17 1 11 13 3 nvlinv U NrmCVec Q X -1 𝑠OLD U Q + v U Q = Q
18 8 17 mpdan U NrmCVec -1 𝑠OLD U Q + v U Q = Q
19 18 fveq2d U NrmCVec T -1 𝑠OLD U Q + v U Q = T Q
20 19 3ad2ant1 U NrmCVec W NrmCVec T L T -1 𝑠OLD U Q + v U Q = T Q
21 simp2 U NrmCVec W NrmCVec T L W NrmCVec
22 1 2 5 lnof U NrmCVec W NrmCVec T L T : X Y
23 22 9 ffvelrnd U NrmCVec W NrmCVec T L T Q Y
24 2 12 14 4 nvlinv W NrmCVec T Q Y -1 𝑠OLD W T Q + v W T Q = Z
25 21 23 24 syl2anc U NrmCVec W NrmCVec T L -1 𝑠OLD W T Q + v W T Q = Z
26 16 20 25 3eqtr3d U NrmCVec W NrmCVec T L T Q = Z