Metamath Proof Explorer


Theorem lnoadd

Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnoadd.1 X = BaseSet U
lnoadd.5 G = + v U
lnoadd.6 H = + v W
lnoadd.7 L = U LnOp W
Assertion lnoadd U NrmCVec W NrmCVec T L A X B X T A G B = T A H T B

Proof

Step Hyp Ref Expression
1 lnoadd.1 X = BaseSet U
2 lnoadd.5 G = + v U
3 lnoadd.6 H = + v W
4 lnoadd.7 L = U LnOp W
5 ax-1cn 1
6 eqid BaseSet W = BaseSet W
7 eqid 𝑠OLD U = 𝑠OLD U
8 eqid 𝑠OLD W = 𝑠OLD W
9 1 6 2 3 7 8 4 lnolin U NrmCVec W NrmCVec T L 1 A X B X T 1 𝑠OLD U A G B = 1 𝑠OLD W T A H T B
10 5 9 mp3anr1 U NrmCVec W NrmCVec T L A X B X T 1 𝑠OLD U A G B = 1 𝑠OLD W T A H T B
11 simp1 U NrmCVec W NrmCVec T L U NrmCVec
12 simpl A X B X A X
13 1 7 nvsid U NrmCVec A X 1 𝑠OLD U A = A
14 11 12 13 syl2an U NrmCVec W NrmCVec T L A X B X 1 𝑠OLD U A = A
15 14 fvoveq1d U NrmCVec W NrmCVec T L A X B X T 1 𝑠OLD U A G B = T A G B
16 simpl2 U NrmCVec W NrmCVec T L A X B X W NrmCVec
17 1 6 4 lnof U NrmCVec W NrmCVec T L T : X BaseSet W
18 ffvelrn T : X BaseSet W A X T A BaseSet W
19 17 12 18 syl2an U NrmCVec W NrmCVec T L A X B X T A BaseSet W
20 6 8 nvsid W NrmCVec T A BaseSet W 1 𝑠OLD W T A = T A
21 16 19 20 syl2anc U NrmCVec W NrmCVec T L A X B X 1 𝑠OLD W T A = T A
22 21 oveq1d U NrmCVec W NrmCVec T L A X B X 1 𝑠OLD W T A H T B = T A H T B
23 10 15 22 3eqtr3d U NrmCVec W NrmCVec T L A X B X T A G B = T A H T B