Metamath Proof Explorer


Theorem lnocni

Description: If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of Kreyszig p. 97. (Contributed by NM, 18-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blocni.8 C = IndMet U
blocni.d D = IndMet W
blocni.j J = MetOpen C
blocni.k K = MetOpen D
blocni.4 L = U LnOp W
blocni.5 B = U BLnOp W
blocni.u U NrmCVec
blocni.w W NrmCVec
blocni.l T L
lnocni.1 X = BaseSet U
Assertion lnocni P X T J CnP K P T J Cn K

Proof

Step Hyp Ref Expression
1 blocni.8 C = IndMet U
2 blocni.d D = IndMet W
3 blocni.j J = MetOpen C
4 blocni.k K = MetOpen D
5 blocni.4 L = U LnOp W
6 blocni.5 B = U BLnOp W
7 blocni.u U NrmCVec
8 blocni.w W NrmCVec
9 blocni.l T L
10 lnocni.1 X = BaseSet U
11 1 2 3 4 5 6 7 8 9 10 blocnilem P X T J CnP K P T B
12 1 2 3 4 5 6 7 8 9 blocni T J Cn K T B
13 11 12 sylibr P X T J CnP K P T J Cn K