Metamath Proof Explorer


Theorem lnocni

Description: If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of Kreyszig p. 97. (Contributed by NM, 18-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blocni.8 C=IndMetU
blocni.d D=IndMetW
blocni.j J=MetOpenC
blocni.k K=MetOpenD
blocni.4 L=ULnOpW
blocni.5 B=UBLnOpW
blocni.u UNrmCVec
blocni.w WNrmCVec
blocni.l TL
lnocni.1 X=BaseSetU
Assertion lnocni PXTJCnPKPTJCnK

Proof

Step Hyp Ref Expression
1 blocni.8 C=IndMetU
2 blocni.d D=IndMetW
3 blocni.j J=MetOpenC
4 blocni.k K=MetOpenD
5 blocni.4 L=ULnOpW
6 blocni.5 B=UBLnOpW
7 blocni.u UNrmCVec
8 blocni.w WNrmCVec
9 blocni.l TL
10 lnocni.1 X=BaseSetU
11 1 2 3 4 5 6 7 8 9 10 blocnilem PXTJCnPKPTB
12 1 2 3 4 5 6 7 8 9 blocni TJCnKTB
13 11 12 sylibr PXTJCnPKPTJCnK