Metamath Proof Explorer


Theorem lnocoi

Description: The composition of two linear operators is linear. (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnocoi.l L = U LnOp W
lnocoi.m M = W LnOp X
lnocoi.n N = U LnOp X
lnocoi.u U NrmCVec
lnocoi.w W NrmCVec
lnocoi.x X NrmCVec
lnocoi.s S L
lnocoi.t T M
Assertion lnocoi T S N

Proof

Step Hyp Ref Expression
1 lnocoi.l L = U LnOp W
2 lnocoi.m M = W LnOp X
3 lnocoi.n N = U LnOp X
4 lnocoi.u U NrmCVec
5 lnocoi.w W NrmCVec
6 lnocoi.x X NrmCVec
7 lnocoi.s S L
8 lnocoi.t T M
9 eqid BaseSet W = BaseSet W
10 eqid BaseSet X = BaseSet X
11 9 10 2 lnof W NrmCVec X NrmCVec T M T : BaseSet W BaseSet X
12 5 6 8 11 mp3an T : BaseSet W BaseSet X
13 eqid BaseSet U = BaseSet U
14 13 9 1 lnof U NrmCVec W NrmCVec S L S : BaseSet U BaseSet W
15 4 5 7 14 mp3an S : BaseSet U BaseSet W
16 fco T : BaseSet W BaseSet X S : BaseSet U BaseSet W T S : BaseSet U BaseSet X
17 12 15 16 mp2an T S : BaseSet U BaseSet X
18 eqid 𝑠OLD U = 𝑠OLD U
19 13 18 nvscl U NrmCVec x y BaseSet U x 𝑠OLD U y BaseSet U
20 4 19 mp3an1 x y BaseSet U x 𝑠OLD U y BaseSet U
21 eqid + v U = + v U
22 13 21 nvgcl U NrmCVec x 𝑠OLD U y BaseSet U z BaseSet U x 𝑠OLD U y + v U z BaseSet U
23 4 22 mp3an1 x 𝑠OLD U y BaseSet U z BaseSet U x 𝑠OLD U y + v U z BaseSet U
24 20 23 stoic3 x y BaseSet U z BaseSet U x 𝑠OLD U y + v U z BaseSet U
25 fvco3 S : BaseSet U BaseSet W x 𝑠OLD U y + v U z BaseSet U T S x 𝑠OLD U y + v U z = T S x 𝑠OLD U y + v U z
26 15 24 25 sylancr x y BaseSet U z BaseSet U T S x 𝑠OLD U y + v U z = T S x 𝑠OLD U y + v U z
27 id x x
28 15 ffvelrni y BaseSet U S y BaseSet W
29 15 ffvelrni z BaseSet U S z BaseSet W
30 5 6 8 3pm3.2i W NrmCVec X NrmCVec T M
31 eqid + v W = + v W
32 eqid + v X = + v X
33 eqid 𝑠OLD W = 𝑠OLD W
34 eqid 𝑠OLD X = 𝑠OLD X
35 9 10 31 32 33 34 2 lnolin W NrmCVec X NrmCVec T M x S y BaseSet W S z BaseSet W T x 𝑠OLD W S y + v W S z = x 𝑠OLD X T S y + v X T S z
36 30 35 mpan x S y BaseSet W S z BaseSet W T x 𝑠OLD W S y + v W S z = x 𝑠OLD X T S y + v X T S z
37 27 28 29 36 syl3an x y BaseSet U z BaseSet U T x 𝑠OLD W S y + v W S z = x 𝑠OLD X T S y + v X T S z
38 4 5 7 3pm3.2i U NrmCVec W NrmCVec S L
39 13 9 21 31 18 33 1 lnolin U NrmCVec W NrmCVec S L x y BaseSet U z BaseSet U S x 𝑠OLD U y + v U z = x 𝑠OLD W S y + v W S z
40 38 39 mpan x y BaseSet U z BaseSet U S x 𝑠OLD U y + v U z = x 𝑠OLD W S y + v W S z
41 40 fveq2d x y BaseSet U z BaseSet U T S x 𝑠OLD U y + v U z = T x 𝑠OLD W S y + v W S z
42 simp2 x y BaseSet U z BaseSet U y BaseSet U
43 fvco3 S : BaseSet U BaseSet W y BaseSet U T S y = T S y
44 15 42 43 sylancr x y BaseSet U z BaseSet U T S y = T S y
45 44 oveq2d x y BaseSet U z BaseSet U x 𝑠OLD X T S y = x 𝑠OLD X T S y
46 simp3 x y BaseSet U z BaseSet U z BaseSet U
47 fvco3 S : BaseSet U BaseSet W z BaseSet U T S z = T S z
48 15 46 47 sylancr x y BaseSet U z BaseSet U T S z = T S z
49 45 48 oveq12d x y BaseSet U z BaseSet U x 𝑠OLD X T S y + v X T S z = x 𝑠OLD X T S y + v X T S z
50 37 41 49 3eqtr4rd x y BaseSet U z BaseSet U x 𝑠OLD X T S y + v X T S z = T S x 𝑠OLD U y + v U z
51 26 50 eqtr4d x y BaseSet U z BaseSet U T S x 𝑠OLD U y + v U z = x 𝑠OLD X T S y + v X T S z
52 51 rgen3 x y BaseSet U z BaseSet U T S x 𝑠OLD U y + v U z = x 𝑠OLD X T S y + v X T S z
53 13 10 21 32 18 34 3 islno U NrmCVec X NrmCVec T S N T S : BaseSet U BaseSet X x y BaseSet U z BaseSet U T S x 𝑠OLD U y + v U z = x 𝑠OLD X T S y + v X T S z
54 4 6 53 mp2an T S N T S : BaseSet U BaseSet X x y BaseSet U z BaseSet U T S x 𝑠OLD U y + v U z = x 𝑠OLD X T S y + v X T S z
55 17 52 54 mpbir2an T S N