Metamath Proof Explorer


Theorem lnof

Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 18-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnof.1 X = BaseSet U
lnof.2 Y = BaseSet W
lnof.7 L = U LnOp W
Assertion lnof U NrmCVec W NrmCVec T L T : X Y

Proof

Step Hyp Ref Expression
1 lnof.1 X = BaseSet U
2 lnof.2 Y = BaseSet W
3 lnof.7 L = U LnOp W
4 eqid + v U = + v U
5 eqid + v W = + v W
6 eqid 𝑠OLD U = 𝑠OLD U
7 eqid 𝑠OLD W = 𝑠OLD W
8 1 2 4 5 6 7 3 islno U NrmCVec W NrmCVec T L T : X Y x y X z X T x 𝑠OLD U y + v U z = x 𝑠OLD W T y + v W T z
9 8 simprbda U NrmCVec W NrmCVec T L T : X Y
10 9 3impa U NrmCVec W NrmCVec T L T : X Y