Metamath Proof Explorer


Theorem lnolin

Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnoval.1 X = BaseSet U
lnoval.2 Y = BaseSet W
lnoval.3 G = + v U
lnoval.4 H = + v W
lnoval.5 R = 𝑠OLD U
lnoval.6 S = 𝑠OLD W
lnoval.7 L = U LnOp W
Assertion lnolin U NrmCVec W NrmCVec T L A B X C X T A R B G C = A S T B H T C

Proof

Step Hyp Ref Expression
1 lnoval.1 X = BaseSet U
2 lnoval.2 Y = BaseSet W
3 lnoval.3 G = + v U
4 lnoval.4 H = + v W
5 lnoval.5 R = 𝑠OLD U
6 lnoval.6 S = 𝑠OLD W
7 lnoval.7 L = U LnOp W
8 1 2 3 4 5 6 7 islno U NrmCVec W NrmCVec T L T : X Y u w X t X T u R w G t = u S T w H T t
9 8 biimp3a U NrmCVec W NrmCVec T L T : X Y u w X t X T u R w G t = u S T w H T t
10 9 simprd U NrmCVec W NrmCVec T L u w X t X T u R w G t = u S T w H T t
11 oveq1 u = A u R w = A R w
12 11 fvoveq1d u = A T u R w G t = T A R w G t
13 oveq1 u = A u S T w = A S T w
14 13 oveq1d u = A u S T w H T t = A S T w H T t
15 12 14 eqeq12d u = A T u R w G t = u S T w H T t T A R w G t = A S T w H T t
16 oveq2 w = B A R w = A R B
17 16 fvoveq1d w = B T A R w G t = T A R B G t
18 fveq2 w = B T w = T B
19 18 oveq2d w = B A S T w = A S T B
20 19 oveq1d w = B A S T w H T t = A S T B H T t
21 17 20 eqeq12d w = B T A R w G t = A S T w H T t T A R B G t = A S T B H T t
22 oveq2 t = C A R B G t = A R B G C
23 22 fveq2d t = C T A R B G t = T A R B G C
24 fveq2 t = C T t = T C
25 24 oveq2d t = C A S T B H T t = A S T B H T C
26 23 25 eqeq12d t = C T A R B G t = A S T B H T t T A R B G C = A S T B H T C
27 15 21 26 rspc3v A B X C X u w X t X T u R w G t = u S T w H T t T A R B G C = A S T B H T C
28 10 27 mpan9 U NrmCVec W NrmCVec T L A B X C X T A R B G C = A S T B H T C