Metamath Proof Explorer


Theorem lnomul

Description: Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnomul.1 X = BaseSet U
lnomul.5 R = 𝑠OLD U
lnomul.6 S = 𝑠OLD W
lnomul.7 L = U LnOp W
Assertion lnomul U NrmCVec W NrmCVec T L A B X T A R B = A S T B

Proof

Step Hyp Ref Expression
1 lnomul.1 X = BaseSet U
2 lnomul.5 R = 𝑠OLD U
3 lnomul.6 S = 𝑠OLD W
4 lnomul.7 L = U LnOp W
5 simpl U NrmCVec W NrmCVec T L A B X U NrmCVec W NrmCVec T L
6 simprl U NrmCVec W NrmCVec T L A B X A
7 simprr U NrmCVec W NrmCVec T L A B X B X
8 simpl1 U NrmCVec W NrmCVec T L A B X U NrmCVec
9 eqid 0 vec U = 0 vec U
10 1 9 nvzcl U NrmCVec 0 vec U X
11 8 10 syl U NrmCVec W NrmCVec T L A B X 0 vec U X
12 eqid BaseSet W = BaseSet W
13 eqid + v U = + v U
14 eqid + v W = + v W
15 1 12 13 14 2 3 4 lnolin U NrmCVec W NrmCVec T L A B X 0 vec U X T A R B + v U 0 vec U = A S T B + v W T 0 vec U
16 5 6 7 11 15 syl13anc U NrmCVec W NrmCVec T L A B X T A R B + v U 0 vec U = A S T B + v W T 0 vec U
17 1 2 nvscl U NrmCVec A B X A R B X
18 8 6 7 17 syl3anc U NrmCVec W NrmCVec T L A B X A R B X
19 1 13 9 nv0rid U NrmCVec A R B X A R B + v U 0 vec U = A R B
20 8 18 19 syl2anc U NrmCVec W NrmCVec T L A B X A R B + v U 0 vec U = A R B
21 20 fveq2d U NrmCVec W NrmCVec T L A B X T A R B + v U 0 vec U = T A R B
22 eqid 0 vec W = 0 vec W
23 1 12 9 22 4 lno0 U NrmCVec W NrmCVec T L T 0 vec U = 0 vec W
24 23 oveq2d U NrmCVec W NrmCVec T L A S T B + v W T 0 vec U = A S T B + v W 0 vec W
25 24 adantr U NrmCVec W NrmCVec T L A B X A S T B + v W T 0 vec U = A S T B + v W 0 vec W
26 simpl2 U NrmCVec W NrmCVec T L A B X W NrmCVec
27 1 12 4 lnof U NrmCVec W NrmCVec T L T : X BaseSet W
28 27 adantr U NrmCVec W NrmCVec T L A B X T : X BaseSet W
29 28 7 ffvelrnd U NrmCVec W NrmCVec T L A B X T B BaseSet W
30 12 3 nvscl W NrmCVec A T B BaseSet W A S T B BaseSet W
31 26 6 29 30 syl3anc U NrmCVec W NrmCVec T L A B X A S T B BaseSet W
32 12 14 22 nv0rid W NrmCVec A S T B BaseSet W A S T B + v W 0 vec W = A S T B
33 26 31 32 syl2anc U NrmCVec W NrmCVec T L A B X A S T B + v W 0 vec W = A S T B
34 25 33 eqtrd U NrmCVec W NrmCVec T L A B X A S T B + v W T 0 vec U = A S T B
35 16 21 34 3eqtr3d U NrmCVec W NrmCVec T L A B X T A R B = A S T B