Metamath Proof Explorer


Theorem lnopaddi

Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 T LinOp
Assertion lnopaddi A B T A + B = T A + T B

Proof

Step Hyp Ref Expression
1 lnopl.1 T LinOp
2 ax-1cn 1
3 1 lnopli 1 A B T 1 A + B = 1 T A + T B
4 2 3 mp3an1 A B T 1 A + B = 1 T A + T B
5 ax-hvmulid A 1 A = A
6 5 fvoveq1d A T 1 A + B = T A + B
7 6 adantr A B T 1 A + B = T A + B
8 1 lnopfi T :
9 8 ffvelrni A T A
10 ax-hvmulid T A 1 T A = T A
11 9 10 syl A 1 T A = T A
12 11 adantr A B 1 T A = T A
13 12 oveq1d A B 1 T A + T B = T A + T B
14 4 7 13 3eqtr3d A B T A + B = T A + T B