Metamath Proof Explorer


Theorem lnopcnbd

Description: A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopcnbd T LinOp T ContOp T BndLinOp

Proof

Step Hyp Ref Expression
1 nmcopex T LinOp T ContOp norm op T
2 1 ex T LinOp T ContOp norm op T
3 elbdop2 T BndLinOp T LinOp norm op T
4 3 baibr T LinOp norm op T T BndLinOp
5 2 4 sylibd T LinOp T ContOp T BndLinOp
6 nmopre T BndLinOp norm op T
7 nmbdoplb T BndLinOp y norm T y norm op T norm y
8 7 ralrimiva T BndLinOp y norm T y norm op T norm y
9 oveq1 x = norm op T x norm y = norm op T norm y
10 9 breq2d x = norm op T norm T y x norm y norm T y norm op T norm y
11 10 ralbidv x = norm op T y norm T y x norm y y norm T y norm op T norm y
12 11 rspcev norm op T y norm T y norm op T norm y x y norm T y x norm y
13 6 8 12 syl2anc T BndLinOp x y norm T y x norm y
14 lnopcon T LinOp T ContOp x y norm T y x norm y
15 13 14 syl5ibr T LinOp T BndLinOp T ContOp
16 5 15 impbid T LinOp T ContOp T BndLinOp