Metamath Proof Explorer


Theorem lnopcnre

Description: A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopcnre T LinOp T ContOp norm op T

Proof

Step Hyp Ref Expression
1 lnopcnbd T LinOp T ContOp T BndLinOp
2 elbdop2 T BndLinOp T LinOp norm op T
3 2 baib T LinOp T BndLinOp norm op T
4 1 3 bitrd T LinOp T ContOp norm op T