Metamath Proof Explorer


Theorem lnopcon

Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopcon T LinOp T ContOp x y norm T y x norm y

Proof

Step Hyp Ref Expression
1 eleq1 T = if T LinOp T I T ContOp if T LinOp T I ContOp
2 fveq1 T = if T LinOp T I T y = if T LinOp T I y
3 2 fveq2d T = if T LinOp T I norm T y = norm if T LinOp T I y
4 3 breq1d T = if T LinOp T I norm T y x norm y norm if T LinOp T I y x norm y
5 4 rexralbidv T = if T LinOp T I x y norm T y x norm y x y norm if T LinOp T I y x norm y
6 1 5 bibi12d T = if T LinOp T I T ContOp x y norm T y x norm y if T LinOp T I ContOp x y norm if T LinOp T I y x norm y
7 idlnop I LinOp
8 7 elimel if T LinOp T I LinOp
9 8 lnopconi if T LinOp T I ContOp x y norm if T LinOp T I y x norm y
10 6 9 dedth T LinOp T ContOp x y norm T y x norm y