Metamath Proof Explorer


Theorem lnopconi

Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypothesis lnopcon.1 T LinOp
Assertion lnopconi T ContOp x y norm T y x norm y

Proof

Step Hyp Ref Expression
1 lnopcon.1 T LinOp
2 nmcopex T LinOp T ContOp norm op T
3 1 2 mpan T ContOp norm op T
4 nmcoplb T LinOp T ContOp y norm T y norm op T norm y
5 1 4 mp3an1 T ContOp y norm T y norm op T norm y
6 1 lnopfi T :
7 elcnop T ContOp T : x z + y + w norm w - x < y norm T w - T x < z
8 6 7 mpbiran T ContOp x z + y + w norm w - x < y norm T w - T x < z
9 6 ffvelrni y T y
10 normcl T y norm T y
11 9 10 syl y norm T y
12 1 lnopsubi w x T w - x = T w - T x
13 3 5 8 11 12 lnconi T ContOp x y norm T y x norm y