Metamath Proof Explorer


Theorem lnopeq

Description: Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopeq T LinOp U LinOp x T x ih x = U x ih x T = U

Proof

Step Hyp Ref Expression
1 fveq1 T = if T LinOp T 0 hop T x = if T LinOp T 0 hop x
2 1 oveq1d T = if T LinOp T 0 hop T x ih x = if T LinOp T 0 hop x ih x
3 2 eqeq1d T = if T LinOp T 0 hop T x ih x = U x ih x if T LinOp T 0 hop x ih x = U x ih x
4 3 ralbidv T = if T LinOp T 0 hop x T x ih x = U x ih x x if T LinOp T 0 hop x ih x = U x ih x
5 eqeq1 T = if T LinOp T 0 hop T = U if T LinOp T 0 hop = U
6 4 5 bibi12d T = if T LinOp T 0 hop x T x ih x = U x ih x T = U x if T LinOp T 0 hop x ih x = U x ih x if T LinOp T 0 hop = U
7 fveq1 U = if U LinOp U 0 hop U x = if U LinOp U 0 hop x
8 7 oveq1d U = if U LinOp U 0 hop U x ih x = if U LinOp U 0 hop x ih x
9 8 eqeq2d U = if U LinOp U 0 hop if T LinOp T 0 hop x ih x = U x ih x if T LinOp T 0 hop x ih x = if U LinOp U 0 hop x ih x
10 9 ralbidv U = if U LinOp U 0 hop x if T LinOp T 0 hop x ih x = U x ih x x if T LinOp T 0 hop x ih x = if U LinOp U 0 hop x ih x
11 eqeq2 U = if U LinOp U 0 hop if T LinOp T 0 hop = U if T LinOp T 0 hop = if U LinOp U 0 hop
12 10 11 bibi12d U = if U LinOp U 0 hop x if T LinOp T 0 hop x ih x = U x ih x if T LinOp T 0 hop = U x if T LinOp T 0 hop x ih x = if U LinOp U 0 hop x ih x if T LinOp T 0 hop = if U LinOp U 0 hop
13 0lnop 0 hop LinOp
14 13 elimel if T LinOp T 0 hop LinOp
15 13 elimel if U LinOp U 0 hop LinOp
16 14 15 lnopeqi x if T LinOp T 0 hop x ih x = if U LinOp U 0 hop x ih x if T LinOp T 0 hop = if U LinOp U 0 hop
17 6 12 16 dedth2h T LinOp U LinOp x T x ih x = U x ih x T = U