| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopeq0.1 |
|
| 2 |
1
|
lnopeq0lem2 |
|
| 3 |
2
|
adantl |
|
| 4 |
|
hvaddcl |
|
| 5 |
|
fveq2 |
|
| 6 |
|
id |
|
| 7 |
5 6
|
oveq12d |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
8
|
rspccva |
|
| 10 |
4 9
|
sylan2 |
|
| 11 |
|
hvsubcl |
|
| 12 |
|
fveq2 |
|
| 13 |
|
id |
|
| 14 |
12 13
|
oveq12d |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
15
|
rspccva |
|
| 17 |
11 16
|
sylan2 |
|
| 18 |
10 17
|
oveq12d |
|
| 19 |
|
0m0e0 |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
|
ax-icn |
|
| 22 |
|
hvmulcl |
|
| 23 |
21 22
|
mpan |
|
| 24 |
|
hvaddcl |
|
| 25 |
23 24
|
sylan2 |
|
| 26 |
|
fveq2 |
|
| 27 |
|
id |
|
| 28 |
26 27
|
oveq12d |
|
| 29 |
28
|
eqeq1d |
|
| 30 |
29
|
rspccva |
|
| 31 |
25 30
|
sylan2 |
|
| 32 |
|
hvsubcl |
|
| 33 |
23 32
|
sylan2 |
|
| 34 |
|
fveq2 |
|
| 35 |
|
id |
|
| 36 |
34 35
|
oveq12d |
|
| 37 |
36
|
eqeq1d |
|
| 38 |
37
|
rspccva |
|
| 39 |
33 38
|
sylan2 |
|
| 40 |
31 39
|
oveq12d |
|
| 41 |
40 19
|
eqtrdi |
|
| 42 |
41
|
oveq2d |
|
| 43 |
|
it0e0 |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
20 44
|
oveq12d |
|
| 46 |
|
00id |
|
| 47 |
45 46
|
eqtrdi |
|
| 48 |
47
|
oveq1d |
|
| 49 |
|
4cn |
|
| 50 |
|
4ne0 |
|
| 51 |
49 50
|
div0i |
|
| 52 |
48 51
|
eqtrdi |
|
| 53 |
3 52
|
eqtrd |
|
| 54 |
53
|
ralrimivva |
|
| 55 |
1
|
lnopfi |
|
| 56 |
55
|
ho01i |
|
| 57 |
54 56
|
sylib |
|
| 58 |
|
fveq1 |
|
| 59 |
|
ho0val |
|
| 60 |
58 59
|
sylan9eq |
|
| 61 |
60
|
oveq1d |
|
| 62 |
|
hi01 |
|
| 63 |
62
|
adantl |
|
| 64 |
61 63
|
eqtrd |
|
| 65 |
64
|
ralrimiva |
|
| 66 |
57 65
|
impbii |
|