Metamath Proof Explorer


Theorem lnopeq0lem1

Description: Lemma for lnopeq0i . Apply the generalized polarization identity polid2i to the quadratic form ( ( Tx ) , x ) . (Contributed by NM, 26-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopeq0.1 T LinOp
lnopeq0lem1.2 A
lnopeq0lem1.3 B
Assertion lnopeq0lem1 T A ih B = T A + B ih A + B - T A - B ih A - B + i T A + i B ih A + i B T A - i B ih A - i B 4

Proof

Step Hyp Ref Expression
1 lnopeq0.1 T LinOp
2 lnopeq0lem1.2 A
3 lnopeq0lem1.3 B
4 1 lnopfi T :
5 4 ffvelrni A T A
6 2 5 ax-mp T A
7 4 ffvelrni B T B
8 3 7 ax-mp T B
9 6 3 8 2 polid2i T A ih B = T A + T B ih A + B - T A - T B ih A - B + i T A + i T B ih A + i B T A - i T B ih A - i B 4
10 1 lnopaddi A B T A + B = T A + T B
11 2 3 10 mp2an T A + B = T A + T B
12 11 oveq1i T A + B ih A + B = T A + T B ih A + B
13 1 lnopsubi A B T A - B = T A - T B
14 2 3 13 mp2an T A - B = T A - T B
15 14 oveq1i T A - B ih A - B = T A - T B ih A - B
16 12 15 oveq12i T A + B ih A + B T A - B ih A - B = T A + T B ih A + B T A - T B ih A - B
17 ax-icn i
18 1 lnopaddmuli i A B T A + i B = T A + i T B
19 17 2 3 18 mp3an T A + i B = T A + i T B
20 19 oveq1i T A + i B ih A + i B = T A + i T B ih A + i B
21 1 lnopsubmuli i A B T A - i B = T A - i T B
22 17 2 3 21 mp3an T A - i B = T A - i T B
23 22 oveq1i T A - i B ih A - i B = T A - i T B ih A - i B
24 20 23 oveq12i T A + i B ih A + i B T A - i B ih A - i B = T A + i T B ih A + i B T A - i T B ih A - i B
25 24 oveq2i i T A + i B ih A + i B T A - i B ih A - i B = i T A + i T B ih A + i B T A - i T B ih A - i B
26 16 25 oveq12i T A + B ih A + B - T A - B ih A - B + i T A + i B ih A + i B T A - i B ih A - i B = T A + T B ih A + B - T A - T B ih A - B + i T A + i T B ih A + i B T A - i T B ih A - i B
27 26 oveq1i T A + B ih A + B - T A - B ih A - B + i T A + i B ih A + i B T A - i B ih A - i B 4 = T A + T B ih A + B - T A - T B ih A - B + i T A + i T B ih A + i B T A - i T B ih A - i B 4
28 9 27 eqtr4i T A ih B = T A + B ih A + B - T A - B ih A - B + i T A + i B ih A + i B T A - i B ih A - i B 4