Metamath Proof Explorer


Theorem lnopeqi

Description: Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopeq.1 T LinOp
lnopeq.2 U LinOp
Assertion lnopeqi x T x ih x = U x ih x T = U

Proof

Step Hyp Ref Expression
1 lnopeq.1 T LinOp
2 lnopeq.2 U LinOp
3 1 lnopfi T :
4 3 ffvelrni x T x
5 hicl T x x T x ih x
6 4 5 mpancom x T x ih x
7 2 lnopfi U :
8 7 ffvelrni x U x
9 hicl U x x U x ih x
10 8 9 mpancom x U x ih x
11 6 10 subeq0ad x T x ih x U x ih x = 0 T x ih x = U x ih x
12 hodval T : U : x T - op U x = T x - U x
13 3 7 12 mp3an12 x T - op U x = T x - U x
14 13 oveq1d x T - op U x ih x = T x - U x ih x
15 id x x
16 his2sub T x U x x T x - U x ih x = T x ih x U x ih x
17 4 8 15 16 syl3anc x T x - U x ih x = T x ih x U x ih x
18 14 17 eqtr2d x T x ih x U x ih x = T - op U x ih x
19 18 eqeq1d x T x ih x U x ih x = 0 T - op U x ih x = 0
20 11 19 bitr3d x T x ih x = U x ih x T - op U x ih x = 0
21 20 ralbiia x T x ih x = U x ih x x T - op U x ih x = 0
22 1 2 lnophdi T - op U LinOp
23 22 lnopeq0i x T - op U x ih x = 0 T - op U = 0 hop
24 3 7 hosubeq0i T - op U = 0 hop T = U
25 21 23 24 3bitri x T x ih x = U x ih x T = U