Metamath Proof Explorer


Theorem lnophdi

Description: The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopco.1 S LinOp
lnopco.2 T LinOp
Assertion lnophdi S - op T LinOp

Proof

Step Hyp Ref Expression
1 lnopco.1 S LinOp
2 lnopco.2 T LinOp
3 1 lnopfi S :
4 2 lnopfi T :
5 3 4 honegsubi S + op -1 · op T = S - op T
6 neg1cn 1
7 2 lnopmi 1 -1 · op T LinOp
8 6 7 ax-mp -1 · op T LinOp
9 1 8 lnophsi S + op -1 · op T LinOp
10 5 9 eqeltrri S - op T LinOp