Metamath Proof Explorer


Theorem lnophmlem1

Description: Lemma for lnophmi . (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnophmlem.1 A
lnophmlem.2 B
lnophmlem.3 T LinOp
lnophmlem.4 x x ih T x
Assertion lnophmlem1 A ih T A

Proof

Step Hyp Ref Expression
1 lnophmlem.1 A
2 lnophmlem.2 B
3 lnophmlem.3 T LinOp
4 lnophmlem.4 x x ih T x
5 id x = A x = A
6 fveq2 x = A T x = T A
7 5 6 oveq12d x = A x ih T x = A ih T A
8 7 eleq1d x = A x ih T x A ih T A
9 8 rspcv A x x ih T x A ih T A
10 1 4 9 mp2 A ih T A