Metamath Proof Explorer


Theorem lnophmlem2

Description: Lemma for lnophmi . (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnophmlem.1 A
lnophmlem.2 B
lnophmlem.3 T LinOp
lnophmlem.4 x x ih T x
Assertion lnophmlem2 A ih T B = T A ih B

Proof

Step Hyp Ref Expression
1 lnophmlem.1 A
2 lnophmlem.2 B
3 lnophmlem.3 T LinOp
4 lnophmlem.4 x x ih T x
5 3 lnopfi T :
6 5 ffvelrni A T A
7 1 6 ax-mp T A
8 5 ffvelrni B T B
9 2 8 ax-mp T B
10 2 7 1 9 polid2i B ih T A = B + A ih T B + T A - B - A ih T B - T A + i B + i A ih T B + i T A B - i A ih T B - i T A 4
11 2 1 hvcomi B + A = A + B
12 9 7 hvcomi T B + T A = T A + T B
13 3 lnopaddi A B T A + B = T A + T B
14 1 2 13 mp2an T A + B = T A + T B
15 12 14 eqtr4i T B + T A = T A + B
16 11 15 oveq12i B + A ih T B + T A = A + B ih T A + B
17 2 1 9 7 hisubcomi B - A ih T B - T A = A - B ih T A - T B
18 3 lnopsubi A B T A - B = T A - T B
19 1 2 18 mp2an T A - B = T A - T B
20 19 oveq2i A - B ih T A - B = A - B ih T A - T B
21 17 20 eqtr4i B - A ih T B - T A = A - B ih T A - B
22 16 21 oveq12i B + A ih T B + T A B - A ih T B - T A = A + B ih T A + B A - B ih T A - B
23 ax-icn i
24 23 2 hvmulcli i B
25 1 24 hvsubcli A - i B
26 5 ffvelrni A - i B T A - i B
27 25 26 ax-mp T A - i B
28 23 23 25 27 his35i i A - i B ih i T A - i B = i i A - i B ih T A - i B
29 23 1 24 hvsubdistr1i i A - i B = i A - i i B
30 23 1 hvmulcli i A
31 23 24 hvmulcli i i B
32 30 31 hvsubvali i A - i i B = i A + -1 i i B
33 23 23 2 hvmulassi i i B = i i B
34 33 oveq2i -1 i i B = -1 i i B
35 ixi i i = 1
36 35 oveq2i -1 i i = -1 -1
37 ax-1cn 1
38 37 37 mul2negi -1 -1 = 1 1
39 1t1e1 1 1 = 1
40 36 38 39 3eqtri -1 i i = 1
41 40 oveq1i -1 i i B = 1 B
42 neg1cn 1
43 23 23 mulcli i i
44 42 43 2 hvmulassi -1 i i B = -1 i i B
45 ax-hvmulid B 1 B = B
46 2 45 ax-mp 1 B = B
47 41 44 46 3eqtr3i -1 i i B = B
48 34 47 eqtr3i -1 i i B = B
49 48 oveq2i i A + -1 i i B = i A + B
50 32 49 eqtri i A - i i B = i A + B
51 30 2 hvcomi i A + B = B + i A
52 29 50 51 3eqtri i A - i B = B + i A
53 52 fveq2i T i A - i B = T B + i A
54 3 lnopmuli i A - i B T i A - i B = i T A - i B
55 23 25 54 mp2an T i A - i B = i T A - i B
56 3 lnopaddmuli i B A T B + i A = T B + i T A
57 23 2 1 56 mp3an T B + i A = T B + i T A
58 53 55 57 3eqtr3i i T A - i B = T B + i T A
59 52 58 oveq12i i A - i B ih i T A - i B = B + i A ih T B + i T A
60 cji i = i
61 60 oveq2i i i = i i
62 23 23 mulneg2i i i = i i
63 35 negeqi i i = -1
64 negneg1e1 -1 = 1
65 63 64 eqtri i i = 1
66 61 62 65 3eqtri i i = 1
67 66 oveq1i i i A - i B ih T A - i B = 1 A - i B ih T A - i B
68 25 1 3 4 lnophmlem1 A - i B ih T A - i B
69 68 recni A - i B ih T A - i B
70 69 mulid2i 1 A - i B ih T A - i B = A - i B ih T A - i B
71 67 70 eqtri i i A - i B ih T A - i B = A - i B ih T A - i B
72 28 59 71 3eqtr3i B + i A ih T B + i T A = A - i B ih T A - i B
73 23 7 hvmulcli i T A
74 2 30 9 73 hisubcomi B - i A ih T B - i T A = i A - B ih i T A - T B
75 35 oveq1i i i B = -1 B
76 33 75 eqtr3i i i B = -1 B
77 76 oveq2i i A + i i B = i A + -1 B
78 23 1 24 hvdistr1i i A + i B = i A + i i B
79 30 2 hvsubvali i A - B = i A + -1 B
80 77 78 79 3eqtr4i i A + i B = i A - B
81 80 fveq2i T i A + i B = T i A - B
82 1 24 hvaddcli A + i B
83 3 lnopmuli i A + i B T i A + i B = i T A + i B
84 23 82 83 mp2an T i A + i B = i T A + i B
85 3 lnopmulsubi i A B T i A - B = i T A - T B
86 23 1 2 85 mp3an T i A - B = i T A - T B
87 81 84 86 3eqtr3i i T A + i B = i T A - T B
88 80 87 oveq12i i A + i B ih i T A + i B = i A - B ih i T A - T B
89 74 88 eqtr4i B - i A ih T B - i T A = i A + i B ih i T A + i B
90 5 ffvelrni A + i B T A + i B
91 82 90 ax-mp T A + i B
92 23 23 82 91 his35i i A + i B ih i T A + i B = i i A + i B ih T A + i B
93 66 oveq1i i i A + i B ih T A + i B = 1 A + i B ih T A + i B
94 82 1 3 4 lnophmlem1 A + i B ih T A + i B
95 94 recni A + i B ih T A + i B
96 95 mulid2i 1 A + i B ih T A + i B = A + i B ih T A + i B
97 93 96 eqtri i i A + i B ih T A + i B = A + i B ih T A + i B
98 89 92 97 3eqtri B - i A ih T B - i T A = A + i B ih T A + i B
99 72 98 oveq12i B + i A ih T B + i T A B - i A ih T B - i T A = A - i B ih T A - i B A + i B ih T A + i B
100 99 oveq2i i B + i A ih T B + i T A B - i A ih T B - i T A = i A - i B ih T A - i B A + i B ih T A + i B
101 22 100 oveq12i B + A ih T B + T A - B - A ih T B - T A + i B + i A ih T B + i T A B - i A ih T B - i T A = A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B
102 101 oveq1i B + A ih T B + T A - B - A ih T B - T A + i B + i A ih T B + i T A B - i A ih T B - i T A 4 = A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B 4
103 10 102 eqtri B ih T A = A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B 4
104 103 fveq2i B ih T A = A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B 4
105 4ne0 4 0
106 1 2 hvaddcli A + B
107 106 1 3 4 lnophmlem1 A + B ih T A + B
108 1 2 hvsubcli A - B
109 108 1 3 4 lnophmlem1 A - B ih T A - B
110 107 109 resubcli A + B ih T A + B A - B ih T A - B
111 110 recni A + B ih T A + B A - B ih T A - B
112 68 94 resubcli A - i B ih T A - i B A + i B ih T A + i B
113 112 recni A - i B ih T A - i B A + i B ih T A + i B
114 23 113 mulcli i A - i B ih T A - i B A + i B ih T A + i B
115 111 114 addcli A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B
116 4re 4
117 116 recni 4
118 115 117 cjdivi 4 0 A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B 4 = A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B 4
119 105 118 ax-mp A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B 4 = A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B 4
120 cjreim A + B ih T A + B A - B ih T A - B A - i B ih T A - i B A + i B ih T A + i B A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B = A + B ih T A + B - A - B ih T A - B - i A - i B ih T A - i B A + i B ih T A + i B
121 110 112 120 mp2an A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B = A + B ih T A + B - A - B ih T A - B - i A - i B ih T A - i B A + i B ih T A + i B
122 82 2 3 4 lnophmlem1 A + i B ih T A + i B
123 68 122 resubcli A - i B ih T A - i B A + i B ih T A + i B
124 123 recni A - i B ih T A - i B A + i B ih T A + i B
125 23 124 mulcli i A - i B ih T A - i B A + i B ih T A + i B
126 111 125 negsubi A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B = A + B ih T A + B - A - B ih T A - B - i A - i B ih T A - i B A + i B ih T A + i B
127 121 126 eqtr4i A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B = A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B
128 23 113 mulneg2i i A - i B ih T A - i B A + i B ih T A + i B = i A - i B ih T A - i B A + i B ih T A + i B
129 69 95 negsubdi2i A - i B ih T A - i B A + i B ih T A + i B = A + i B ih T A + i B A - i B ih T A - i B
130 129 oveq2i i A - i B ih T A - i B A + i B ih T A + i B = i A + i B ih T A + i B A - i B ih T A - i B
131 128 130 eqtr3i i A - i B ih T A - i B A + i B ih T A + i B = i A + i B ih T A + i B A - i B ih T A - i B
132 131 oveq2i A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B = A + B ih T A + B - A - B ih T A - B + i A + i B ih T A + i B A - i B ih T A - i B
133 14 oveq2i A + B ih T A + B = A + B ih T A + T B
134 133 20 oveq12i A + B ih T A + B A - B ih T A - B = A + B ih T A + T B A - B ih T A - T B
135 3 lnopaddmuli i A B T A + i B = T A + i T B
136 23 1 2 135 mp3an T A + i B = T A + i T B
137 136 oveq2i A + i B ih T A + i B = A + i B ih T A + i T B
138 3 lnopsubmuli i A B T A - i B = T A - i T B
139 23 1 2 138 mp3an T A - i B = T A - i T B
140 139 oveq2i A - i B ih T A - i B = A - i B ih T A - i T B
141 137 140 oveq12i A + i B ih T A + i B A - i B ih T A - i B = A + i B ih T A + i T B A - i B ih T A - i T B
142 141 oveq2i i A + i B ih T A + i B A - i B ih T A - i B = i A + i B ih T A + i T B A - i B ih T A - i T B
143 134 142 oveq12i A + B ih T A + B - A - B ih T A - B + i A + i B ih T A + i B A - i B ih T A - i B = A + B ih T A + T B - A - B ih T A - T B + i A + i B ih T A + i T B A - i B ih T A - i T B
144 127 132 143 3eqtri A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B = A + B ih T A + T B - A - B ih T A - T B + i A + i B ih T A + i T B A - i B ih T A - i T B
145 cjre 4 4 = 4
146 116 145 ax-mp 4 = 4
147 144 146 oveq12i A + B ih T A + B - A - B ih T A - B + i A - i B ih T A - i B A + i B ih T A + i B 4 = A + B ih T A + T B - A - B ih T A - T B + i A + i B ih T A + i T B A - i B ih T A - i T B 4
148 104 119 147 3eqtrri A + B ih T A + T B - A - B ih T A - T B + i A + i B ih T A + i T B A - i B ih T A - i T B 4 = B ih T A
149 1 9 2 7 polid2i A ih T B = A + B ih T A + T B - A - B ih T A - T B + i A + i B ih T A + i T B A - i B ih T A - i T B 4
150 7 2 his1i T A ih B = B ih T A
151 148 149 150 3eqtr4i A ih T B = T A ih B